* Prayer
* Spiritual thought

Limit \longrightarrow Derivative \longrightarrow Applications of derivatives \longrightarrow Integral
(ale I: $\quad \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{x}\right) \Delta x_{k} \quad$ (analyter definition)

Geometrically, $\int_{a}^{b} f(x) d x$ represents the area under the carve $y=f(x)$. Multivariable calc:

$$
\int \underbrace{\iint_{D} f(x, y) d A}_{\begin{array}{c}
\text { double } \\
\text { integral }
\end{array}}, \underbrace{\iiint_{E} f(x, y, z) d V}_{\begin{array}{c}
\text { triple } \\
\text { integral }
\end{array}}
$$

Note: double (triple integrals don't have "orrentatim", unlike single integral.

$$
\iint_{D} f(x, y) d A=\lim _{n \rightarrow \infty} \sum_{c_{j j}=1}^{n} f\left(x_{c}^{*}, y_{j}^{*}\right) \Delta A_{c j}
$$

Geometrically, $\iint_{D} f(x, y) d A$ represents the volume under the surface $z=f(x, y)$

Hew to compute $\iint_{D} f(x, y) d A$ precisely?
The answer depends on the shape of D. The easiest case is when D is a rectangle $D=[a, b] \times[c, d]$.

$$
\begin{aligned}
\iint_{D} f(x, y) d A & =\text { volume of the solid } \\
= & \int_{a}^{b} S(x) d x
\end{aligned}
$$

whee $S(x)$ is the area of the cos section of the solid at x.

$$
S(x)=\int_{c}^{d} f(x, y) d y .
$$

Therefore, $\quad \underbrace{\iint_{D} f(x, y) d A}_{\text {double ategal }}=\underbrace{\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x}_{\text {iterated integral }}=\underbrace{\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y}_{\text {iterated internal }}$
Er:

$$
\begin{aligned}
\iint_{[-1,1] x[0,2]}\left(x^{2}+x y\right) d A= & \left.\int_{-1}^{1} \int_{0}^{2}\left(x^{2}+x y\right) d y d x=\int_{-1}^{1}\left(x^{2} y+\frac{x y^{2}}{2}\right)\right)\left.\right|_{y=0} ^{y=2} d x \\
& =\int_{-1}^{1}\left(2 x^{2}+2 x\right) d x=\left.\left(\frac{2 x^{3}}{3}+x^{2}\right)\right|_{-1} ^{1}=\frac{4}{3} .
\end{aligned}
$$

$E 2$ Fridge of this shape:

what is the volume of this fridge?
Two ways:
(1) Volume $=$ area of the orange trapezoid $\times 4$

$$
=\frac{3+2}{2} \times 2 \times 4=20
$$

(2) Let $f(x, y)$ be a function whose graph is guenby the top lid of the fridge. Then

$$
\begin{aligned}
& \text { volume }=\iint_{[0,4] \times[0,2]} f(x, y) d A=\int_{0}^{4} \int_{0}^{2} f(x, y) d y d x \\
& f(x, y)=3-\frac{y}{2} \leadsto \text { volume }=\int_{0}^{4} \int_{0}^{2}\left(3-\frac{y}{2}\right) d y d x \\
& =\int_{0}^{4}\left(3 y-\frac{y^{2}}{4}\right)| |_{y=0}=2 d x \\
& =\int_{0}^{4} 5 d x=20
\end{aligned}
$$

Example:
Solid given by $-1-x^{\wedge} 2-y^{\wedge} 2<=z<=x^{\wedge} 2-y^{\wedge} 2,-2<=x, y<=2$
What is the volume?

Mathematica:
$R=$ ImplicitRegion $\left[-2-x^{\wedge} 2-y^{\wedge} 2 \leq z \leq x^{\wedge} 2-y^{\wedge} 2 \& \&-2 \leq x \leq 2 \& \&-2 \leq y \leq 2,\{x, y, z\}\right]$
Region [R, AspectRatio $\rightarrow 1$]

